Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(3): 963-968, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437525

RESUMO

Gene synthesis efficiency has greatly improved in recent years but is limited when it comes to repetitive sequences, which results in synthesis failure or delays by DNA synthesis vendors. This represents a major obstacle for the development of synthetic biology since repetitive elements are increasingly being used in the design of genetic circuits and design of biomolecular nanostructures. Here, we describe a method for the assembly of small synthetic genes with repetitive elements: First, a gene of interest is split in silico into small synthons of up to 80 base pairs flanked by Golden-Gate-compatible overhangs. Then, synthons are made by oligo extension and finally assembled into a synthetic gene by Golden Gate Assembly. We demonstrate the method by constructing eight challenging genes with repetitive elements, e.g., multiple repeats of RNA aptamers and RNA origami scaffolds with multiple identical aptamers. The genes range in size from 133 to 456 base pairs and are assembled with fidelities of up to 87.5%. The method was developed to facilitate our own specific research but may be of general use for constructing challenging and repetitive genes and, thus, a valuable addition to the molecular cloning toolbox.


Assuntos
Genes Sintéticos , Nanoestruturas , Sequências Repetitivas de Ácido Nucleico/genética , Clonagem Molecular , RNA/química , Nanoestruturas/química , Biologia Sintética/métodos
2.
Nucleic Acids Res ; 51(9): 4613-4624, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36999628

RESUMO

Cryogenic electron microscopy (cryo-EM) is a promising method for characterizing the structure of larger RNA structures and complexes. However, the structure of individual aptamers is difficult to solve by cryo-EM due to their low molecular weight and a high signal-to-noise ratio. By placing RNA aptamers on larger RNA scaffolds, the contrast for cryo-EM can be increased to allow the determination of the tertiary structure of the aptamer. Here we use the RNA origami method to scaffold two fluorescent aptamers (Broccoli and Pepper) in close proximity and show that their cognate fluorophores serve as donor and acceptor for FRET. Next, we use cryo-EM to characterize the structure of the RNA origami with the two aptamers to a resolution of 4.4 Å. By characterizing the aptamers with and without ligand, we identify two distinct modes of ligand binding, which are further supported by selective chemical probing. 3D variability analysis of the cryo-EM data show that the relative position between the two bound fluorophores on the origami fluctuate by only 3.5 Å. Our results demonstrate a general approach for using RNA origami scaffolds for characterizing small RNA motifs by cryo-EM and for positioning functional RNA motifs with high spatial precision.


Assuntos
Aptâmeros de Nucleotídeos , Conformação de Ácido Nucleico , RNA , Aptâmeros de Nucleotídeos/química , Microscopia Crioeletrônica/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Ligantes , RNA/química
3.
Nat Nanotechnol ; 18(7): 808-817, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36849548

RESUMO

RNA origami is a method for designing RNA nanostructures that can self-assemble through co-transcriptional folding with applications in nanomedicine and synthetic biology. However, to advance the method further, an improved understanding of RNA structural properties and folding principles is required. Here we use cryogenic electron microscopy to study RNA origami sheets and bundles at sub-nanometre resolution revealing structural parameters of kissing-loop and crossover motifs, which are used to improve designs. In RNA bundle designs, we discover a kinetic folding trap that forms during folding and is only released after 10 h. Exploration of the conformational landscape of several RNA designs reveal the flexibility of helices and structural motifs. Finally, sheets and bundles are combined to construct a multidomain satellite shape, which is characterized by individual-particle cryo-electron tomography to reveal the domain flexibility. Together, the study provides a structural basis for future improvements to the design cycle of genetically encoded RNA nanodevices.


Assuntos
Nanoestruturas , RNA , RNA/química , Nanotecnologia/métodos , Nanoestruturas/química , Conformação Molecular , Nanomedicina , Conformação de Ácido Nucleico
4.
Small ; 19(13): e2204651, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36526605

RESUMO

RNA nanotechnology takes advantage of structural modularity to build self-assembling nano-architectures with applications in medicine and synthetic biology. The use of paranemic motifs, that form without unfolding existing secondary structure, allows for the creation of RNA nanostructures that are compatible with cotranscriptional folding in vitro and in vivo. In previous work, kissing-loop (KL) motifs have been widely used to design RNA nanostructures that fold cotranscriptionally. However, the paranemic crossover (PX) motif has not yet been explored for cotranscriptional RNA origami architectures and information about the structural geometry of the motif is unknown. Here, a six base pair-wide paranemic RNA interaction that arranges double helices in a perpendicular manner is introduced, allowing for the generation of a new and versatile building block: the paranemic-crossover triangle (PXT). The PXT is self-assembled by cotranscriptional folding and characterized by cryogenic electron microscopy, revealing for the first time an RNA PX interaction in high structural detail. The PXT is used as a building block for the construction of multimers that form filaments and rings and a duplicated PXT motif is used as a building block to self-assemble cubic structures, demonstrating the PXT as a rigid self-folding domain for the development of wireframe RNA origami architectures.


Assuntos
Nanoestruturas , RNA , RNA/química , Conformação de Ácido Nucleico , DNA/química , Nanotecnologia , Nanoestruturas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...